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Rys. 1: Positions of two points before and after the displacement
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Notation
r(x , y , z) – position vector of the point P ;
dr =

−→
PQ = (dx , dy , dz) – relative position vector of the point Q

with respect to the position of the point Q;
r + dr = (x + dx , y + dy , z + dz) – position vector of the point Q
with respect to the origin of the co-ordinate system;
ρ =
−−→
PP ′ = (ξ, η, ζ) – displacement vector of the point P ;

ρQ =
−−→
QQ ′ = ρ + dρ – displacement vector of the point Q;

dr′ =
−−→
P ′Q ′ = dr + dρ – relative position vector of the point Q ′

with respect to the position of the point P ′.
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Displacement

It is seen from Fig. 1 that |dr| 6= |dr′| . This is deformation of the
material medium.

Tensor of the relative displacement

dξ =
∂ξ

∂x
dx +

∂ξ

∂y
dy +

∂ξ

∂z
dz ,

dη =
∂η

∂x
dx +

∂η

∂y
dy +

∂η

∂z
dz ,

dζ =
∂ζ

∂x
dx +

∂ζ

∂y
dy +

∂ζ

∂z
dz ,

(1)

dρ = T dr , (2)

T – tensor of the relative displacement.
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Tensor of the relative displacement

It is seen from Fig. 1 that

dr′ = dr + dρ , (3)

dr′ = dr + T dr = (1 + T )dr , (4)

"1" – unit tensor

‖δµν‖ =

∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥ . (5)

Notation: T ′ = 1 + T , and

dr′ = T ′dr . (6)
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Tensor of the relative displacement T – in general is not a
symmetric tensor. Let us decompose it on the symmetric T (s) and
antisymmetric T (a) parts:

T = T (s) + T (a) , (7)

T (s) =

∥∥∥∥∥∥∥∥∥
Txx

1
2 (Txy + Tyz) 1

2 (Txz + Tzx)

1
2 (Txy + Tyz) Tyy

1
2 (Tyz + Tzy )

1
2 (Txz + Tzx) 1

2 (Txz + Tzx) Tzz

∥∥∥∥∥∥∥∥∥ (8)

T (a) =

∥∥∥∥∥∥∥∥∥
0 1

2 (Txy − Tyz) 1
2 (Txz − Tzx)

− 1
2 (Txy − Tyz) 0 1

2 (Tyz − Tzy )

− 1
2 (Txz − Tzx) 1

2 (Tyz − Tzy ) 0

∥∥∥∥∥∥∥∥∥ (9)
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Displacement

Let us introduce the vector

T(a) = i
1
2

(Tzy − Tyz) + j
1
2

(Txz − Tzx) + k
1
2

(Tyz − Txy ) (10)

Making use of the definition of the tensor T (compare (1) and (2))

2T(a) = i
(
∂ζ

∂y
− ∂η

∂z

)
+ j

(
∂ξ

∂z
− ∂ζ

∂x

)
+ k

(
∂η

∂x
− ∂ξ

∂y

)
(11)

Notation: T(a) = u
u =

1
2
rot ρ (12)
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Deformation

Notation: T(s) = T(d) – tensor of the pure deformation (d like
deformation)

T(d) =

∥∥∥∥∥∥
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

∥∥∥∥∥∥ =

∥∥∥∥∥∥
εx γz γy
γz εy γx
γy γx εz

∥∥∥∥∥∥ (13)

εx =
∂ξ

∂x
, γx =

1
2

(
∂η

∂z
+
∂ζ

∂y

)
εy =

∂η

∂y
, γy =

1
2

(
∂ζ

∂x
+
∂ξ

∂z

)
(14)

εz =
∂ζ

∂z
, γz =

1
2

(
∂ξ

∂y
+
∂η

∂x

)
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Deformation
εx , εz , εz – longitudinal deformation
γx , γy , γz – transversal deformation

It can be easily shown that for an arbitrary vector a and
antisymmetric tensor T

T (a) a = T(a) × a (15)

where vector T(a) has a form (10)

T(a) = i
1
2

(Tzy − Tyz) + j
1
2

(Txz − Tzx) + k
1
2

(Tyz − Txy )

i.e.
dρ = T (d) dr + u× dr . (16)
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Geometrical interpretation of the symmetric tensor

Every symmetric tensor can be brought to the main axes

0 

a|| Ta 

A 

n 
A’ 

a 

Rys. 2: Geometrical construction of the vector Ta with the help of the tensorial
quadric
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Quadric equation
Let us consider all vectors a satisfying the equation

aT a = F (ax , ay , az) = const 6= 0 . (17)

F = Txxa2
x + Tyya2

y + Tzza2
z + 2Txyaxay + 2Tyzayaz + 2Tzxazax . (18)

This is an equation of the surface of the second order with the
center at the beginning of the vector a – tensorial quadric –
geometrical representation 9 of the symmetric tensor T .

Ta =
1
2

(i
∂F
∂ax

+ j
∂F
∂ay

+ k
∂F
∂az

) =
1
2

grad F , (19)

i.e. the vector Ta is parallel to the normal vector n.
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Geometrical interpretation of the symmetric tensor
In general vectors a and Ta have different directions and as it is
seen from Fig. 2. Both vectors are parallel when the vector a lies on
the one of the three main axes of the tensorial quadric. In the
rectangular co-ordinate system u, v , w with axes along the main
quadric axes and with versors iu, jv , kw , one has

aTa = Tuua2u + Tvva2v + Twwa2w . (20)

Vector Ta

Ta = iu Tuuau + jv Tvvav + kw Twwaw , (21)

has components on the main axes elongated with respect to the
vector a {Tuu,Tvv ,Tww} -times . This is the origin of the word
tensor, od (lat. tendo, tentendi, tentum) or more poetic tensum –
elongate.
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T(d) =

∥∥∥∥∥∥
εu 0 0
0 εv 0
0 0 εw

∥∥∥∥∥∥ . (22)

εu, εv , εw – main elongations.

dr = iudu + jvdv + kwdw . (23)

From (22) and (23)  

dρd = T (d)dr = iuεudu + jvεvdv + kwεwdw . (24)

Quadric of the tensor T

drT (d)dr = εudu2 + εvdv2 + εwdw2 . (25)
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Interpretation of the main elongations
From (24)  

dξd = εudu, dηd = εvdv , dζd = εwdw , (26)

i.e.
εu =

dξd
du

, εv =
dηd

dv
, εw =

dζd
dw

. (27)

Main elongation εu means the relative change of the distance, i.e. the
change of the distance on the unit of length.
If before the deformation the distance between two points was du, then
after the displacement it was

du + dξd = (1 + εu)du . (28)
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The proper volume strain

u 

w 

v 

l 

Rys. 3: Change of the volume of the cube caused by the deformation
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The proper volume strain
The volume of a cube

V = l3 . (29)

Caused by deformation the cube edges are elongated:

∆lu = l(1 + εu), ∆lv = l(1 + εv ), ∆lw = l(1 + εw ) . (30)

The new cube volume:

V ′ = l3(1 + εu)(1 + εv )(1 + εw ) . (31)

εi – is very small, so V ′ = l3(1 + εu + εv + εw ) . The change of the volume:

∆V = V ′ − V . (32)

The relative change of the volume (on the unit of volume):

∆V
V

= εu + εv + εw . (33)
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The proper volume strain

The sum of the components on the main diagonal of the tensor is an
invariant with respect to the the change of the co-ordinate system (the
trace), so

∆V
V

= εx + εy + εz , (34)

but
∆V
V

=
∂ξ

∂x
+
∂η

∂y
+
∂ζ

∂z
, (35)

i.e. the proper volume strain θ

θ =
∆V
V

= div ρ , (36)

where
θ = εx + εy + εz . (37)
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Transversal deformation

0 

z 

y 
γx 

Rys. 4: Shearing of the cube in the plane y , z
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From the definition of the tensor T (d) (Eqn (13))

dξd = εxdx + γzdy + γydz ,
dηd = γzdx + εydy + γxdz ,
dζd = γydx + γxdy + εzdz .

(38)

Let us assume that only γx 6= 0, the rest vanishes. In such a case:

dξd = 0 , dηd = γxdz , dζd = γxdy . (39)
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Transversal deformation

Points on the axis x :  dy = dz = 0 – they do not change
the positions;
Points on the axis y :  dx = dz = 0 – there is a translation
in the direction of the axis z proportional to dy , and axis y
rotates in the direction of axis z by the angle γx (tg γx ≈ γx);
Points on the axis z :  dx = dy = 0 – rotation of the axis z
in the direction of the axis y by the angle γx .

In particular the square on the plane perpendicular to the axis x ,
take the form of a rhombus (compare Fig. 4) it is a change of the
shape without changing a volume.
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Definition of the velocity
Velocity: it is a vector

v(x , y , z , t) =
∂ρ(x , y , z , t)

∂t
=

(
∂ξ

∂t
,
∂η

∂t
,
∂ζ

∂t

)
(x , y , z , t) . (40)

Definition of the acceleration
Acceleration: it is a vector

a = (v grad)v +
∂v
∂t

. (41)
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Let us consider a certain physical quantity ϕ – scalar, vector or
tensor:

ϕ = ϕ(r, t) = ϕ(x , y , z , t) .

One can proceed in two ways:
1 observe the changing of the ϕ in the define3d point of the

space przestrzeni;
2 observe the changing of the ϕ for the defined and traveling the

point of the medium.
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Local derivative
Ad 1. Change of ϕ in the defined point of a space r defines the
local derivative of the quantity ϕ.

∂ϕ

∂t
= lim

∆t→0

ϕ(r, t + ∆t)− ϕ(r, t)

∆t
. (42)

Substantial derivative
Ad 2. ϕ(r, t) – value in the instant t at the point r.

dϕ
dt

= lim
∆t→0

ϕ(r + v∆t, t + ∆t)− ϕ(r, t)

∆t
. (43)
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Substantial derivative
After developing into series and neglecting the higher order terms

dϕ
dt

= (v grad)ϕ+
∂ϕ

∂t
. (44)

Conclusions

1 Velocity v is the local derivative of the displacement vector with
respect to time (compare Eqn (40)):

v =
∂ρ

∂t
.

2 Acceleration a is the substantial derivative of the velocity vector
v(r , t) with respect to time (compare Eqn (41)):

a =
dϕ
dt

= (v grad)v +
∂v
∂t

.
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Tension vector

R 

f 
Sn 

n 

Rys. 5: Tension vector
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Tension vector
Tension vector Sndf – describes the interaction of two parts of the
continuous media divided by the imaginary arbitrary surface; it is a
surface force with which the element df , pointed by the normal
vector n, acts on the opposite part of the body.

Dimension of the tension: [siła]
[cm]2

Dimension of the force: ????????
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Dynamics of the continuous media

Gauss theorem ∫
R

div Tdv =

∫
S

T ndf . (45)

Tension vector
Tension vector can be represented by the tensor:

Sn = S n . (46)

gdzie

S =

∥∥∥∥∥∥
Sxx Syx Szx
Sxy Syy Szy
Sxz Syz Szz

∥∥∥∥∥∥ (47)
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Dynamics of the continuous media

∫
F

Sndf =

∫
F

Sndf =

∫
R

div Sdτ . (48)

Equation of motion∫
R
ρm

dv
dt

=

∫
R
ρmFdτ +

∫
F

Sndf , (49)

ρm – mass density of the medium; F – external force acting on the
mass unit; Sn – surface tension.∫

R

(
ρm

dv
dt
− ρmF− div S

)
dτ = 0 . (50)
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Dynamics of the continuous media

Equation of motion

ρm
dv
dt

= ρm F + div S . (51)
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Elastic medium

Ideally elastic medium
tensions Sµν are the unique functions of strains εmn:

Sµν = fµν(εmn) . (52)

It can be shown that the tension tensor Sµν is symmetric

S =

∥∥∥∥∥∥
σx τz τy
τz σy τx
τy τx σz

∥∥∥∥∥∥ . (53)
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Hooke’s law
Robert Hooke declared his law in 1676 in the form of an anagram:

ceiiinosssttvu

what means ut tensio sic vis
what means a force is so big as stretching

Romuald Kotowski Continuous Media



Introduction
Fundamental equations

Kinematics of the continuous media
Local and substantial derivatives

Dynamics of the continuous media

Elastic medium

Elastic medium

Ideally elastic medium

Develop Eqn (54) into series, omit the higher order terms in order
to obtain the generalized equation of motion: components of the
tension tensor are the linear functions of the strain tensor
components at the every point of the elastic body: σij = cijklεkl .
Eg. (when no initial tensions then the constant quantities vanish):

σx = c11εx + c12εy + c13εz + c142γx + c152γy + c162γz (54)

τx = c41εx + c42εy + c43εz + c442γx + c452γy + c462γz (55)
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Elastic medium

Energy
During the deformation external forces volume forces and the
surface forces execute a certain work, which partially is changed
into the kinetic and partially is changed into the potential energy.
We have

δU + δEk = δA + δQ , (56)

δU – increase of the potential energy; δEk – increase of the kinetic
energy; δQ – supplied heat; δA = δAS + δAp: Ap – work executed by the
mass forces, AS – work executed by the surface forces.

When heat is not supplied then δV is the total differential (conclusion
from thermodynamics)
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Elastic medium

Lowering the number of the elastic constants
In general the number of the elastic constants equals 81. When no
initial tensions and cµν = cνµ, the number of the elastic constants
is reduced to 21.

Isotropic body
elastic potential does not depend on the change of the change of
the co-ordinate system, i.e. it can be expressed with the help of the
invariants.
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Elastic medium

Isotropic body – invariants

J1 = εx + εy + εz , (57)

J2 =

∣∣∣∣ εx γz
γz εy

∣∣∣∣+

∣∣∣∣ εy γx
γx εz

∣∣∣∣+

∣∣∣∣ εz γy
γy εz

∣∣∣∣ (58)

J3 =

∣∣∣∣∣∣
εx γz γy
γz εy γy
γy γx εz

∣∣∣∣∣∣ (59)
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Elastic medium

Isotropic body – invariants
Isotropic elastic body without initial tensions

v(J1, J2) = AJ2
1 + BJ2 > 0 (60)

(two elastic constants only, J3 is absent, because it is the quantity of the third order).

Isotropic elastic body with initial tensions

v(J1, J2) = −PJ1 + AJ2
1 + BJ2 > 0 (61)

A = 0, B = 0 tensions create spherically-symmetric tension, identical in all
directions. Such situation occurs in liquids:

σx = σy = σz = −P ,

τx = τy = τz = 0 .
(62)
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:-)

The end of the lecture 7
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