Physics for Computer Science Students Lecture 7
 MECHANICS OF CONTINUOUS MEDIA

Romuald Kotowski

Department of Applied Informatics

PJIIT 2009

Introduction

Today: mechanics of continuous media!

Table of contents

(1) Introduction
(2) Fundamental equations of the continuous media mechanics

- Displacement
- Deformation
(3) Kinematics of the continuous media
(4) Local and substantial derivatives
(5) Dynamics of the continuous media
- Elastic medium

Romuald Kotowski

Continuous Media

Displacement

Deformation

Displacement

Displacement vector

Rys. 1: Positions of two points before and after the displacement

Displacement vector

Notation

$\mathbf{r}(x, y, z)$ - position vector of the point P;
$d \mathbf{r}=\overrightarrow{P Q}=(d x, d y, d z)$ - relative position vector of the point Q with respect to the position of the point Q;
$\mathbf{r}+d \mathbf{r}=(x+d x, y+d y, z+d z)-$ position vector of the point Q with respect to the origin of the co-ordinate system;
$\boldsymbol{\rho}=P P^{\prime}=(\xi, \eta, \zeta)-$ displacement vector of the point P;
$\rho_{Q}=\overrightarrow{Q Q^{\prime}}=\rho+d \rho-$ displacement vector of the point Q;
$d \mathbf{r}^{\prime}=\overrightarrow{P^{\prime} Q^{\prime}}=d \mathbf{r}+d \boldsymbol{\rho}$ - relative position vector of the point Q^{\prime} with respect to the position of the point P^{\prime}.

Displacement

It is seen from Fig. 1 that $|d \mathbf{r}| \neq\left|d \mathbf{r}^{\prime}\right|$. This is deformation of the material medium.

Tensor of the relative displacement

$$
\begin{align*}
& d \xi=\frac{\partial \xi}{\partial x} d x+\frac{\partial \xi}{\partial y} d y+\frac{\partial \xi}{\partial z} d z, \\
& d \eta=\frac{\partial \eta}{\partial x} d x+\frac{\partial \eta}{\partial y} d y+\frac{\partial \eta}{\partial z} d z, \tag{1}\\
& d \zeta=\frac{\partial \zeta}{\partial x} d x+\frac{\partial \zeta}{\partial y} d y+\frac{\partial \zeta}{\partial z} d z,
\end{align*}
$$

Displacement

It is seen from Fig. 1 that $|d \mathbf{r}| \neq\left|d \mathbf{r}^{\prime}\right|$. This is deformation of the material medium.

Tensor of the relative displacement

$$
\begin{gather*}
d \xi=\frac{\partial \xi}{\partial x} d x+\frac{\partial \xi}{\partial y} d y+\frac{\partial \xi}{\partial z} d z \\
d \eta=\frac{\partial \eta}{\partial x} d x+\frac{\partial \eta}{\partial y} d y+\frac{\partial \eta}{\partial z} d z \tag{1}\\
d \zeta=\frac{\partial \zeta}{\partial x} d x+\frac{\partial \zeta}{\partial y} d y+\frac{\partial \zeta}{\partial z} d z \\
d \boldsymbol{\rho}=T d \mathbf{r} \tag{2}
\end{gather*}
$$

T - tensor of the relative displacement.

Tensor of the relative displacement

It is seen from Fig. 1 that

$$
\begin{gather*}
d \mathbf{r}^{\prime}=d \mathbf{r}+d \boldsymbol{\rho} \tag{3}\\
d \mathbf{r}^{\prime}=d \mathbf{r}+T d \mathbf{r}=(1+T) d \mathbf{r} \tag{4}
\end{gather*}
$$

"1" - unit tensor

$$
\left\|\delta_{\mu \nu}\right\|=\left\|\begin{array}{lll}
1 & 0 & 0 \tag{5}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right\|
$$

Notation: $T^{\prime}=1+T$, and

$$
\begin{equation*}
d \mathbf{r}^{\prime}=T^{\prime} d \mathbf{r} \tag{6}
\end{equation*}
$$

Displacement

Tensor of the relative displacement T - in general is not a symmetric tensor. Let us decompose it on the symmetric $T^{(s)}$ and antisymmetric $T^{(a)}$ parts:

$$
\begin{gather*}
T=T^{(s)}+T^{(a)}, \tag{7}\\
T^{(s)}=\left\|\begin{array}{ccc}
T_{x x} & \frac{1}{2}\left(T_{x y}+T_{y z}\right) & \frac{1}{2}\left(T_{x z}+T_{z x}\right) \\
\frac{1}{2}\left(T_{x y}+T_{y z}\right) & T_{y y} & \frac{1}{2}\left(T_{y z}+T_{z y}\right) \\
\frac{1}{2}\left(T_{x z}+T_{z x}\right) & \frac{1}{2}\left(T_{x z}+T_{z x}\right) & T_{z z}
\end{array}\right\| \tag{8}\\
T^{(a)}=\left\|\begin{array}{ccc}
0 & \frac{1}{2}\left(T_{x y}-T_{y z}\right) & \frac{1}{2}\left(T_{x z}-T_{z x}\right) \\
-\frac{1}{2}\left(T_{x y}-T_{y z}\right) & 0 & \frac{1}{2}\left(T_{y z}-T_{z y}\right) \\
-\frac{1}{2}\left(T_{x z}-T_{z x}\right) & \frac{1}{2}\left(T_{y z}-T_{z y}\right) & 0
\end{array}\right\| \tag{9}
\end{gather*}
$$

Displacement

Let us introduce the vector

$$
\begin{equation*}
\mathbf{T}^{(a)}=\mathrm{i} \frac{1}{2}\left(T_{z y}-T_{y z}\right)+\mathrm{j} \frac{1}{2}\left(T_{x z}-T_{z x}\right)+\mathrm{k} \frac{1}{2}\left(T_{y z}-T_{x y}\right) \tag{10}
\end{equation*}
$$

Making use of the definition of the tensor T (compare (1) and (2))

$$
\begin{equation*}
2 \mathbf{T}^{(a)}=\mathbf{i}\left(\frac{\partial \zeta}{\partial y}-\frac{\partial \eta}{\partial z}\right)+\mathbf{j}\left(\frac{\partial \xi}{\partial z}-\frac{\partial \zeta}{\partial x}\right)+\mathbf{k}\left(\frac{\partial \eta}{\partial x}-\frac{\partial \xi}{\partial y}\right) \tag{11}
\end{equation*}
$$

Notation: $\mathbf{T}^{(a)}=\mathbf{u}$

$$
\begin{equation*}
\mathbf{u}=\frac{1}{2} \operatorname{rot} \rho \tag{12}
\end{equation*}
$$

Table of contents

(1) Introduction
(2) Fundamental equations of the continuous media mechanics

- Displacement
- Deformation
(3) Kinematics of the continuous media

4. Local and substantial derivatives
(3) Dynamics of the continuous media

- Elastic medium

Deformation

Notation: $\mathbf{T}^{(s)}=\mathbf{T}^{(d)}$ - tensor of the pure deformation (d like deformation)

$$
\mathbf{T}^{(d)}=\left\|\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \tag{13}\\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right\|=\left\|\begin{array}{ccc}
\varepsilon_{x} & \gamma_{z} & \gamma_{y} \\
\gamma_{z} & \varepsilon_{y} & \gamma_{x} \\
\gamma_{y} & \gamma_{x} & \varepsilon_{z}
\end{array}\right\|
$$

$$
\begin{array}{ll}
\varepsilon_{x}=\frac{\partial \xi}{\partial x}, & \gamma_{x}=\frac{1}{2}\left(\frac{\partial \eta}{\partial z}+\frac{\partial \zeta}{\partial y}\right) \\
\varepsilon_{y}=\frac{\partial \eta}{\partial y}, & \gamma_{y}=\frac{1}{2}\left(\frac{\partial \zeta}{\partial x}+\frac{\partial \xi}{\partial z}\right) \tag{14}\\
\varepsilon_{z}=\frac{\partial \zeta}{\partial z}, & \gamma_{z}=\frac{1}{2}\left(\frac{\partial \xi}{\partial y}+\frac{\partial \eta}{\partial x}\right)
\end{array}
$$

Deformation

$\varepsilon_{x}, \varepsilon_{z}, \varepsilon_{z}$ - longitudinal deformation
$\gamma_{x}, \gamma_{y}, \gamma_{z}$ - transversal deformation

It can be easily shown that for an arbitrary vector a and antisymmetric tensor T

$$
\begin{equation*}
T^{(a)} \mathbf{a}=\mathbf{T}^{(a)} \times \mathbf{a} \tag{15}
\end{equation*}
$$

where vector $\mathbf{T}^{(a)}$ has a form (10)

$$
\mathbf{T}^{(a)}=\mathbf{i} \frac{1}{2}\left(T_{z y}-T_{y z}\right)+\mathbf{j} \frac{1}{2}\left(T_{x z}-T_{z x}\right)+\mathbf{k} \frac{1}{2}\left(T_{y z}-T_{x y}\right)
$$

i.e.

$$
\begin{equation*}
d \boldsymbol{\rho}=T^{(d)} d \mathbf{r}+\mathbf{u} \times d \mathbf{r} \tag{16}
\end{equation*}
$$

Geometrical interpretation of the symmetric tensor

Every symmetric tensor can be brought to the main axes

Rys. 2: Geometrical construction of the vector Ta with the help of the tensorial quadric

Geometrical interpretation of the symmetric tensor

Quadric equation

Let us consider all vectors a satisfying the equation

$$
\begin{gather*}
\mathbf{a} T \mathbf{a}=F\left(a_{x}, a_{y}, a_{z}\right)=\text { const } \neq 0 . \tag{17}\\
F=T_{x x} a_{x}^{2}+T_{y y} a_{y}^{2}+T_{z z} a_{z}^{2}+2 T_{x y} a_{x} a_{y}+2 T_{y z} a_{y} a_{z}+2 T_{z x} a_{z} a_{x} . \tag{18}
\end{gather*}
$$

This is an equation of the surface of the second order with the center at the beginning of the vector a - tensorial quadric geometrical representation 9 of the symmetric tensor T.

$$
\begin{equation*}
T \mathbf{a}=\frac{1}{2}\left(\mathbf{i} \frac{\partial F}{\partial a_{x}}+\mathbf{j} \frac{\partial F}{\partial a_{y}}+\mathbf{k} \frac{\partial F}{\partial a_{z}}\right)=\frac{1}{2} \operatorname{grad} F, \tag{19}
\end{equation*}
$$

i.e. the vector $T \mathbf{a}$ is parallel to the normal vector \mathbf{n}.

Geometrical interpretation of the symmetric tensor

In general vectors a and T a have different directions and as it is seen from Fig. 2. Both vectors are parallel when the vector a lies on the one of the three main axes of the tensorial quadric. In the rectangular co-ordinate system u, v, w with axes along the main quadric axes and with versors $\mathbf{i}_{u}, \mathbf{j}_{v}, \mathbf{k}_{w}$, one has

$$
\begin{equation*}
\mathbf{a} T \mathbf{a}=T_{u u} a_{u}^{2}+T_{v v} a_{v}^{2}+T_{w w} a_{w}^{2} \tag{20}
\end{equation*}
$$

Vector Ta

$$
\begin{equation*}
T \mathbf{a}=\mathbf{i}_{u} T_{u u} a_{u}+\mathbf{j}_{v} T_{v v} a_{v}+\mathbf{k}_{w} T_{w w} a_{w} \tag{21}
\end{equation*}
$$

has components on the main axes elongated with respect to the vector a $\left\{T_{u u}, T_{v v}, T_{w w}\right\}$-times. This is the origin of the word tensor, od (lat. tendo, tentendi, tentum) or more poetic tensum elongate.

Main elongations

$$
\mathbf{T}^{(d)}=\left\|\begin{array}{ccc}
\varepsilon_{u} & 0 & 0 \tag{22}\\
0 & \varepsilon_{v} & 0 \\
0 & 0 & \varepsilon_{w}
\end{array}\right\|
$$

$\varepsilon_{u}, \varepsilon_{v}, \varepsilon_{w}$ - main elongations.

$$
\begin{equation*}
d \mathbf{r}=\mathbf{i}_{u} d u+\mathbf{j}_{v} d v+\mathbf{k}_{w} d w \tag{23}
\end{equation*}
$$

From (22) and (23) \rightsquigarrow

$$
\begin{equation*}
d \boldsymbol{\rho}_{d}=T^{(d)} d \mathbf{r}=\mathbf{i}_{u} \varepsilon_{u} d u+\mathbf{j}_{v} \varepsilon_{v} d v+\mathbf{k}_{w} \varepsilon_{w} d w \tag{24}
\end{equation*}
$$

Quadric of the tensor T

$$
\begin{equation*}
d r T^{(d)} d r=\varepsilon_{u} d u^{2}+\varepsilon_{v} d v^{2}+\varepsilon_{w} d w^{2} . \tag{25}
\end{equation*}
$$

Main elongations

Interpretation of the main elongations

From (24) \rightsquigarrow

$$
\begin{equation*}
d \xi_{d}=\varepsilon_{u} d u, d \eta_{d}=\varepsilon_{v} d v, d \zeta_{d}=\varepsilon_{w} d w \tag{26}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\varepsilon_{u}=\frac{d \xi_{d}}{d u}, \varepsilon_{v}=\frac{d \eta_{d}}{d v}, \varepsilon_{w}=\frac{d \zeta_{d}}{d w} . \tag{27}
\end{equation*}
$$

Main elongation ε_{u} means the relative change of the distance, i.e. the change of the distance on the unit of length.
If before the deformation the distance between two points was $d u$, then after the displacement it was

$$
\begin{equation*}
d u+d \xi_{d}=\left(1+\varepsilon_{u}\right) d u \tag{28}
\end{equation*}
$$

The proper volume strain

Rys. 3: Change of the volume of the cube caused by the deformation

The proper volume strain

The volume of a cube

$$
\begin{equation*}
V=I^{3} . \tag{29}
\end{equation*}
$$

Caused by deformation the cube edges are elongated:

$$
\begin{equation*}
\Delta I_{u}=I\left(1+\varepsilon_{u}\right), \Delta I_{v}=I\left(1+\varepsilon_{v}\right), \Delta I_{w}=I\left(1+\varepsilon_{w}\right) . \tag{30}
\end{equation*}
$$

The new cube volume:

$$
\begin{equation*}
V^{\prime}=I^{3}\left(1+\varepsilon_{u}\right)\left(1+\varepsilon_{v}\right)\left(1+\varepsilon_{w}\right) \tag{31}
\end{equation*}
$$

ε_{i} - is very small, so $V^{\prime}=I^{3}\left(1+\varepsilon_{u}+\varepsilon_{v}+\varepsilon_{w}\right)$. The change of the volume:

$$
\begin{equation*}
\Delta V=V^{\prime}-V \tag{32}
\end{equation*}
$$

The relative change of the volume (on the unit of volume):

$$
\begin{equation*}
\frac{\Delta V}{V}=\varepsilon_{u}+\varepsilon_{v}+\varepsilon_{w} \tag{33}
\end{equation*}
$$

The proper volume strain

The sum of the components on the main diagonal of the tensor is an invariant with respect to the the change of the co-ordinate system (the trace), so

$$
\begin{equation*}
\frac{\Delta V}{V}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \tag{34}
\end{equation*}
$$

but

$$
\begin{equation*}
\frac{\Delta V}{V}=\frac{\partial \xi}{\partial x}+\frac{\partial \eta}{\partial y}+\frac{\partial \zeta}{\partial z} \tag{35}
\end{equation*}
$$

i.e. the proper volume strain θ

$$
\begin{equation*}
\theta=\frac{\Delta V}{V}=\operatorname{div} \rho \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} . \tag{37}
\end{equation*}
$$

Transversal deformation

Rys. 4: Shearing of the cube in the plane y, z

Transversal deformation

From the definition of the tensor $T^{(d)}$ (Eqn (13))

$$
\begin{align*}
& d \xi_{d}=\varepsilon_{x} d x+\gamma_{z} d y+\gamma_{y} d z \\
& d \eta_{d}=\gamma_{z} d x+\varepsilon_{y} d y+\gamma_{x} d z \tag{38}\\
& d \zeta_{d}=\gamma_{y} d x+\gamma_{x} d y+\varepsilon_{z} d z
\end{align*}
$$

Let us assume that only $\gamma_{x} \neq 0$, the rest vanishes. In such a case:

$$
\begin{equation*}
d \xi_{d}=0, d \eta_{d}=\gamma_{x} d z, d \zeta_{d}=\gamma_{x} d y \tag{39}
\end{equation*}
$$

Transversal deformation

- Points on the axis $x: \rightsquigarrow d y=d z=0$ - they do not change the positions;
- Points on the axis y : $\rightsquigarrow d x=d z=0$ - there is a translation in the direction of the axis z proportional to $d y$, and axis y rotates in the direction of axis z by the angle $\gamma_{x}\left(\operatorname{tg} \gamma_{x} \approx \gamma_{x}\right)$;
- Points on the axis $z: \rightsquigarrow d x=d y=0$ - rotation of the axis z in the direction of the axis y by the angle γ_{x}.

In particular the square on the plane perpendicular to the axis x, take the form of a rhombus (compare Fig. 4) it is a change of the shape without changing a volume.

Kinematics of the continuous media

Definition of the velocity

Velocity: it is a vector

$$
\begin{equation*}
\mathrm{v}(x, y, z, t)=\frac{\partial \boldsymbol{\rho}(x, y, z, t)}{\partial t}=\left(\frac{\partial \xi}{\partial t}, \frac{\partial \eta}{\partial t}, \frac{\partial \zeta}{\partial t}\right)(x, y, z, t) . \tag{40}
\end{equation*}
$$

Definition of the acceleration

Acceleration: it is a vector

$$
\begin{equation*}
\mathbf{a}=(\mathbf{v g r a d}) \mathbf{v}+\frac{\partial \mathbf{v}}{\partial t} . \tag{41}
\end{equation*}
$$

Local and substantial derivatives

Let us consider a certain physical quantity φ - scalar, vector or tensor:

$$
\varphi=\varphi(\mathbf{r}, t)=\varphi(x, y, z, t)
$$

One can proceed in two ways:
(1) observe the changing of the φ in the define3d point of the space przestrzeni;
(2) observe the changing of the φ for the defined and traveling the point of the medium.

Local and substantial derivatives

Local derivative

Ad 1. Change of φ in the defined point of a space \mathbf{r} defines the local derivative of the quantity φ.

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}=\lim _{\Delta t \rightarrow 0} \frac{\varphi(\mathbf{r}, t+\Delta t)-\varphi(\mathbf{r}, t)}{\Delta t} \tag{42}
\end{equation*}
$$

Substantial derivative

Ad 2. $\varphi(\mathbf{r}, t)$ - value in the instant t at the point \mathbf{r}.

$$
\begin{equation*}
\frac{d \varphi}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\varphi(\mathbf{r}+\mathbf{v} \Delta t, t+\Delta t)-\varphi(\mathbf{r}, t)}{\Delta t} \tag{43}
\end{equation*}
$$

Local and substantial derivatives

Substantial derivative

After developing into series and neglecting the higher order terms

$$
\begin{equation*}
\frac{d \varphi}{d t}=(\mathbf{v} \operatorname{grad}) \varphi+\frac{\partial \varphi}{\partial t} . \tag{44}
\end{equation*}
$$

Conclusions

(1) Velocity \mathbf{v} is the local derivative of the displacement vector with respect to time (compare Eqn (40)):

$$
\mathbf{v}=\frac{\partial \rho}{\partial t}
$$

(2) Acceleration a is the substantial derivative of the velocity vector $v(r, t)$ with respect to time (compare Eqn (41)):

$$
\mathbf{a}=\frac{d \varphi}{d t}=(\mathbf{v} \operatorname{grad}) \mathbf{v}+\frac{\partial \mathbf{v}}{\partial t}
$$

Dynamics of the continuous media

Tension vector

Rys. 5: Tension vector

Dynamics of the continuous media

Tension vector

Tension vector $\mathbf{S}_{n} d f$ - describes the interaction of two parts of the continuous media divided by the imaginary arbitrary surface; it is a surface force with which the element $d f$, pointed by the normal vector \mathbf{n}, acts on the opposite part of the body.
Dimension of the tension: $\frac{[\text { siła] }}{[\mathrm{cm}]^{2}}$
Dimension of the force: ????????

Dynamics of the continuous media

Gauss theorem

$$
\begin{equation*}
\int_{R} \operatorname{div} T d v=\int_{S} T \mathbf{n} d f . \tag{45}
\end{equation*}
$$

Tension vector

Tension vector can be represented by the tensor:

$$
\begin{equation*}
\mathbf{S}_{n}=S \mathbf{n} . \tag{46}
\end{equation*}
$$

gdzie

$$
S=\left\|\begin{array}{lll}
S_{x x} & S_{y x} & S_{z x} \tag{47}\\
S_{x y} & S_{y y} & S_{z y} \\
S_{x z} & S_{y z} & S_{z z}
\end{array}\right\|
$$

Dynamics of the continuous media

$$
\begin{equation*}
\int_{F} \mathbf{S}_{n} d f=\int_{F} S \mathbf{n} d f=\int_{R} \operatorname{div} S d \tau . \tag{48}
\end{equation*}
$$

Equation of motion

$$
\begin{equation*}
\int_{R} \rho_{m} \frac{d \mathbf{v}}{d t}=\int_{R} \rho_{m} \mathbf{F} d \tau+\int_{F} \mathbf{S}_{n} d f, \tag{49}
\end{equation*}
$$

ρ_{m} - mass density of the medium; \mathbf{F} - external force acting on the mass unit; \mathbf{S}_{n} - surface tension.

$$
\begin{equation*}
\int_{R}\left(\rho_{m} \frac{d v}{d t}-\rho_{m} \mathbf{F}-\operatorname{div} S\right) d \tau=0 . \tag{50}
\end{equation*}
$$

Dynamics of the continuous media

Equation of motion

$$
\rho_{m} \frac{d \mathbf{v}}{d t}=\rho_{m} \mathbf{F}+\operatorname{div} S .
$$

Table of contents

(1) Introduction
(2) Fundamental equations of the continuous media mechanics

- Displacement
- Deformation
(3) Kinematics of the continuous media

4. Local and substantial derivatives
(5) Dynamics of the continuous media

- Elastic medium

Romuald Kotowski

Elastic medium

Ideally elastic medium

tensions $S_{\mu \nu}$ are the unique functions of strains $\varepsilon_{m n}$:

$$
\begin{equation*}
S_{\mu \nu}=f_{\mu \nu}\left(\varepsilon_{m n}\right) \tag{52}
\end{equation*}
$$

It can be shown that the tension tensor $S_{\mu \nu}$ is symmetric

$$
S=\left\|\begin{array}{ccc}
\sigma_{x} & \tau_{z} & \tau_{y} \tag{53}\\
\tau_{z} & \sigma_{y} & \tau_{x} \\
\tau_{y} & \tau_{x} & \sigma_{z}
\end{array}\right\|
$$

Elastic medium

Hooke's law

Robert Hooke declared his law in 1676 in the form of an anagram:

ceiiinosssttvu

what means ut tensio sic vis what means a force is so big as stretching

Elastic medium

Ideally elastic medium

Develop Eqn (54) into series, omit the higher order terms in order to obtain the generalized equation of motion: components of the tension tensor are the linear functions of the strain tensor components at the every point of the elastic body: $\sigma_{i j}=c_{i j k l} \varepsilon_{k l}$. Eg. (when no initial tensions then the constant quantities vanish):

$$
\begin{align*}
& \sigma_{x}=c_{11} \varepsilon_{x}+c_{12} \varepsilon_{y}+c_{13} \varepsilon_{z}+c_{14} 2 \gamma_{x}+c_{15} 2 \gamma_{y}+c_{16} 2 \gamma_{z} \tag{54}\\
& \tau_{x}=c_{41} \varepsilon_{x}+c_{42} \varepsilon_{y}+c_{43} \varepsilon_{z}+c_{44} 2 \gamma_{x}+c_{45} 2 \gamma_{y}+c_{46} 2 \gamma_{z} \tag{55}
\end{align*}
$$

Elastic medium

Energy

During the deformation external forces volume forces and the surface forces execute a certain work, which partially is changed into the kinetic and partially is changed into the potential energy. We have

$$
\begin{equation*}
\delta U+\delta E_{k}=\delta A+\delta Q \tag{56}
\end{equation*}
$$

$\delta U-$ increase of the potential energy; δE_{k} - increase of the kinetic energy; δQ - supplied heat; $\delta A=\delta A_{S}+\delta A_{p}$: A_{p} - work executed by the mass forces, A_{S} - work executed by the surface forces.

When heat is not supplied then δV is the total differential (conclusion from thermodynamics)

Elastic medium

Lowering the number of the elastic constants

In general the number of the elastic constants equals 81. When no initial tensions and $c_{\mu \nu}=c_{\nu \mu}$, the number of the elastic constants is reduced to 21 .

Isotropic body

elastic potential does not depend on the change of the change of the co-ordinate system, i.e. it can be expressed with the help of the invariants.

Elastic medium

Isotropic body - invariants

$$
\begin{gather*}
J_{1}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}, \tag{57}\\
J_{2}=\left|\begin{array}{ll}
\varepsilon_{x} & \gamma_{z} \\
\gamma_{z} & \varepsilon_{y}
\end{array}\right|+\left|\begin{array}{ll}
\varepsilon_{y} & \gamma_{x} \\
\gamma_{x} & \varepsilon_{z}
\end{array}\right|+\left|\begin{array}{ll}
\varepsilon_{z} & \gamma_{y} \\
\gamma_{y} & \varepsilon_{z}
\end{array}\right| \\
J_{3}=\left|\begin{array}{lll}
\varepsilon_{x} & \gamma_{z} & \gamma_{y} \\
\gamma_{z} & \varepsilon_{y} & \gamma_{y} \\
\gamma_{y} & \gamma_{x} & \varepsilon_{z}
\end{array}\right|
\end{gather*}
$$

Elastic medium

Isotropic body - invariants

Isotropic elastic body without initial tensions

$$
\begin{equation*}
v\left(J_{1}, J_{2}\right)=A J_{1}^{2}+B J_{2}>0 \tag{60}
\end{equation*}
$$

(two elastic constants only, J_{3} is absent, because it is the quantity of the third order). Isotropic elastic body with initial tensions

$$
\begin{equation*}
v\left(J_{1}, J_{2}\right)=-P J_{1}+A J_{1}^{2}+B J_{2}>0 \tag{61}
\end{equation*}
$$

$A=0, B=0$ tensions create spherically-symmetric tension, identical in all directions. Such situation occurs in liquids:

$$
\begin{array}{r}
\sigma_{x}=\sigma_{y}=\sigma_{z}=-P, \\
\tau_{x}=\tau_{y}=\tau_{z}=0 . \tag{62}
\end{array}
$$

The end of the lecture 7

