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Waves are everywhere and of every shape. We have surface and

volume waves, we have sea and acoustic waves, we have . . .

One have to distinguish waves and pulses:

Wave: disturbance of a medium travelling with a de�ned

velocity in the de�ned direction. In the case of the

electromagnetic waves � it is the disturbace of the �eld.

Pulse: measurable (changing in time) disturbance od the

medium.
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Fig. 1: The beachcomber (on the shallow water)
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Fig. 2: Traveling pulse
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Wave: arbitrary disturbance of a medium travelling with a de�ned

velocity in the de�ned direction.
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Waves in strings, long thin tubes, single way roads. . . i.e. waves

propagating along de�ned lines.

One-dimensional wave is described by the function u of two

co-ordinates � position x and time t: u = u(x,t)
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Kinematics and dynamics of waves is described by PDE (Partial

Di�erential Equations) (systems of equations), because the

function u depends on many variables.

ut =
∂u

∂t
, ux =

∂u

∂x
, uxt =

∂2u

∂t ∂x
, . . .

Below: some examples.
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Example 1. Transport Equation

ut + c ux = 0 .

describes e.g. polutant spilled into a fast moving stream.

u(x , t) � the concentration of pollutant. Prior to the arrival of the

pollutant at the position x , the value u = 0.

Example 2. Di�usion equation, conductivity equation (heat,

electric current)

ut = D uxx .

Romuald Kotowski Vibrations and Waves



Introduction
Mathematical representation of waves

Korteweg-deVries (KdV) Equation
Vibrations and wave equation

Re�ection and refraction of waves

Representation of one dimensional waves
Traveling and standing waves
Wave front and pulses
Wave trains and dispersion

Example 3. Linearized Burgers equation

ut + c ux = D uxx ,

a combination of the transport and di�usion processes.

Example 4. Nonlinear Burgers equation

ut + u ux = D uxx ,

a fundamental equation from �uid mechanics that combines a

di�erent advection processes with di�usion. For D = 0 it becomes

the inviscid Burgers equation

ut + u ux = 0 ,

classical example of shock waves.
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Example 5. Equation of vibrating string � wave equation

utt = c2 uxx .

it not suggest that this is the only equation which describes wave

behavior.

Example 6. Korteweg-deVries equation

ut + u ux + uxxx = 0 ,

was derived in 1895 by Korteweg and deVriesa to model waves on

the surface of relatively shallow water. Of particular interest are

solutions of this equations called solitary waves or solitons.
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Traveling wave

u(x , t) = f (x − c t) , (1)

f � function of one variable, c � constant 6= 0.

If c > 0 � wave travels with the velocity c in the positive sense of

the direction of the co-ordinate axis; for c < 0 � in opposite.

Example 7. Find the solution of the wave equation

utt = a uxx , constant a > 0 ,

in the form of the travelling wave.
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We assume the solution in the form u(x , t) = f (x − c t) and

di�erentiate

ut(x , t) = [f ′(x − c t)](x − c t)t = −c f ′(x − c t) ,

ux(x , t) = [f ′(x − c t)](x − c t)x = f ′(x − c t) .

and once again

utt(x , t) = [−cf ′′(x − c t)](x − c t)t = c2 f ′′(x − c t) ,

uxx(x , t) = [−cf ′′(x − c t)](x − c t)x = f ′′(x − c t) .
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We put the obtained result into the wave equation

c
2
f

′′(x − c t) = a f
′′(x − c t) .

Putting z = (x − c t) we obtain

(c2 − a) f ′′(z) = 0 ,

for all z .

if c2 = a

u(x , t) = f (x −
√
a t) , u(x , t) = f (x +

√
a t) .

Examples of solutions:
u(x , t) = sin(x −

√
a t) ,

u(x , t) = (x +
√
a t)4 ,

u(x , t) = e−(x−
√
a t)2 ;
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if f ′′ = 0

f (z) = A + B z ,

B 6= 0 in order the pro�l f is not constant.
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Wave front � e.g. a sudden change in weather (see Fig. 3.
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Traveling wave u(x , t) is the wave front, if for an arbitrary instant

of time t

u(x , t) −→ k1 , gdy x −→ −∞ ,

u(x , t) −→ k2 , gdy x −→∞ ,

for certain constants k1 i k2 .

In the case when k1 = k2 the wave front is called the pulse.
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The traveling wave of the type u(x , t) = cos(2x + 6t) is neither a wave front nor a
pulse � it is ana example of the another type of a wave.
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Fig. 4: One cycle of a wave train
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A traveling wave which can be written in the form

u(x , t) = A cos(kx − ωt) lub u(x , t) = A cos(kx + ωt) ,

A 6= 0 , k > 0 i ω > 0 � constants, is called a wave train.
After rewriting

u(x , t) = A cos
[
k
(
x − ω

k
t
)]

,

it is seen that it is
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the traveling wave u(x , t) = f (kx − ωt);

with a pro�le f (z) = A cos(kz);

traveling with a velocity c = ω/k (see Fig. 4);

f (z) is a periodic function.

k � wave number, giving a number of cycles in the window of the

length = 2π;
ω � circular frequency, de�nes number of wave cycles at the point

x in the time interval 2π.
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Not all k i ω are permitted. Relation between ω and k is called

the dispersion equation

ω = ω(k) ,

Example 8. Klein-Gordon equation

utt = a uxx − b u , (2)

a , b � constants, > 0 ,

models the transverse vibration of a string with a linear restoring

force.
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The wave train is a solution of this equation if

−ω2 A cos(kx −ωt) = a[−k2 A cos(kx −ωt)]− b A cos(kx −ωt) ,
(3)

or

A(ω2 − ak2 − b) cos(kx − ωt) = 0 . (4)
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Dispersion equation ω2 = ak2 + b , i.e. ω =
√
ak2 + b , and thus

u(x , t) = A cos
(
kx −

√
ak2 + b t

)
= A

[
k

(
x −

√
ak2 + b

k2
t

)]
,

(5)

travels with the velocity

c =

√
ak2 + b

k2
=

√
a +

b

k2
=

√
a +

ab

ω2 − b
, (6)

wave train with the greater frequency travel with a smaller speed.

Klein-Gordon equation is dispersive.
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Example 9. Transport equation

ut + a ux = 0 . (7)

Wave train is a solution if

ω A sin(kx − ωt) + a[−kA sin(kx − ωt)] = 0 , (8)

or
A(ω − a k) sin(kx − ωt) = 0 , (9)

dispersion ω = a k .
For every wave number wave train travels with the constant velocity
c = a. Transport equation is not dispersive.
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Solitons

I was observing the motion of a boat which was rapidly drawn along a narrow channel

by a pair of horses, when the boat suddenly stopped - not so the mass of water in the

channel which it had put in motion; it accumulated round the prow of the vessel in a

state of violent agitation, then suddenly leaving it behind, rolled forward with great

velocity, assuming the form of a large solitary elevation, a rounded, smooth and

well-de�ned heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback, and

overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its

original �gure some thirty feet long and a foot to a foot and a half in height. Its height

gradually diminished, and after a chase of one or two miles I lost it in the windings of

the channel. Such, in the month of August 1834, was my �rst chance interview with

that singular and beautiful phenomenon which I have called the Wave of Translation.

J.S. Russel, 1844
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Solitons

Throughout his life Russell remained convinced that his solitary wave (the Wave of

Translation) was of fundamental importance, but nineteenth and early twentieth
century scientists thought otherwise. His fame has rested on other achievements. To
mention some of his many and varied activities, he developed the "wave line" system
of hull construction which revolutionized nineteenth century naval architecture, and
was awarded the gold medal of the Royal Society of Edinburgh in 1837. He began
steam carriage service between Glasgow and Paisley in 1834, and made one of the �rst
experimental observations of the "Doppler shift" of sound frequency as a train passes.
He reorganized the Royal Society of Arts, founded the Institution of Naval Architects
and in 1849 was elected Fellow of the Royal Society of London. He designed (with
Brunel) the "Great Eastern" and built it; he designed the Vienna Rotunda and helped
to design Britain's �rst armored warship (the "Warrior"). He developed a curriculum
for technical education in Britain, and it has recently become known that he
attempted to negotiate peace during the American Civil War.
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Solitons

In 1895 Korteweg and de Vries obtained an equation modeling the

height of the surface of the shallow water in the presence of long

wave gravitational waves. For such waves the wavelength is big as

compared with the depth of the water.

Ut + (a1 + a2U)Ux + a3Uxxx = 0 , a2, a3 6= 0 . (10)

It is the third order nonlinear di�erential equation. jest The

replacement u = a1 + a2U and re-scaling of the independent

variables x and t gives

ut + u ux + uxxx = 0 . (11)
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Fig. 5: Pulsu pro�le for which u(x , t), ux (x , t) and uxxx (x , t) → 0, when x → ±∞.
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We are looking for a solution u(x , t) = f (x − ct) in a form of a

pulse with c > 0 and with u(x , t), ux(x , t) and uxxx(x , t) → 0,

when x → ±∞ (see Fig. 5). We obtain

− cf ′ + � ′ + f ′′′ = 0 . (12)

Integrate once again

− cf +
1

2
f 2 + f ′′ = a , (13)

a � integration constant.

Because f (z) and f ′′(z) for z → ±∞, a has to vanish.
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Multiply by f ′ and integrate once again

− 1

2
cf 2 +

1

6
f 3 +

1

2
(f ′)2 = b . (14)

By the condition of vanishing in in�nity b = 0.

We solve with respect to (f ′)2

3(f ′)2 = (3c − f )f 2 . (15)

We substitute: g2 = 3c − f ; and it follows: f = 3c − g2,

f ′ = −2gg ′.

2
√
3

3c − g2
g ′ = −1 . (16)
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We decompose into simple fractions and integrate with respect to

z :

ln

(√
3c + g√
3c − g

)
= −
√
c z + d , (17)

d � integration constant. We solve with respect to g

g(z) =
√
3c

exp(−
√
c z + d)− 1

exp(−
√
c z + d) + 1

= −
√
3c tgh

[
1

2
(
√
c z − d)

]
,

(18)
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In the old notation

f (z) = 3c sech2[
1

2
(
√
c z − d)] . (19)

Recalling :

sech(z) = 1/cosh(z) , cosh(z) =
1

2
(ez + e−z) .

d does not in�uence the solution (the argument is shifted only)

argumentu), so we put d = 0 ,

u(x , t) = 3c sech2
[√

c

2
(x − ct)

]
.
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Fig. 6: Pro�le of the solution of the KdV equation (soliton)

Russel has found, that his waves on the water travel faster if they are higher. Our
solution con�rms his observation, because the amplitude is proportional to c (= 3c.
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Fig. 7: The Scott Russell Aqueduct on the Union Canal near Heriot-Watt University,
12 July 1995. For the technically minded, the aqueduct is 89.3 m long, 4.13m wide,
and 1.52m deep.
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Fig. 8: Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt
University, 12 July 1995
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The 'Wave of Translation' itself was regarded as a curiosity until the 1960s when
scientists began to use modern digital computers to study non-linear wave
propagation. Then an explosion of activity occurred when it was discovered that many
phenomena in physics, electronics and biology can be described by the mathematical
and physical theory of the 'soliton', as Scott Russell's wave is now known. This work
has continued and currently includes modeling high temperature superconductors and
energy transport in DNA, as well as in the development of new mathematical
techniques and concepts underpinning further developments.
After a delay which would probably be unacceptable to present day funding bodies, and
in a �eld he could never have dreamed of, Scott Russell's observations and research of
160 years ago have hit the big time in the present day �bre-optic communications
industry. The qualities of the soliton wave which excited him (the fact that it does not
break up, spread out or lose strength over distance) make it ideal for �bre-optic
communications networks where billions of solitons per second carry information down
�bre circuits for cable TV, telephone and computers ("The secrets of everlasting life",
New Scientist 15 April 1995). It is �tting that a �bre-optic cable linking Edinburgh
and Glasgow now runs beneath the very tow-path from which John Scott Russell
made his initial observations, and along the aqueduct which now bears his name.
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The wave equation

utt = c2 uxx , (20)

models the vibration of the tensed string (e.g. in the guitar).
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Fig. 9: Displacement u(x , t) at the instant t in the position x

u(x , t) � measure of the displacement of the string in the position x at the instant t;
ut(x , t) � vertical velocity of the point x on the string at the instant t; utt(x , t) �
vertical acceleration of the point x on the string at the instant t; ux (x , t) � measure
of the inclination of the string in the position x .
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Vibrations depend on the material of the string and on the value of

the force tensing the string. We make the following assumptions:

the string is uniform: the density of mass ρ on the unit of

length is constant;

vibrations are �at: string remains in its plane of vibrations;

the tension is uniform: every part of the string acts on

neighbors with the same force T ; direction of the force

changes, it is always tangent to the string zmienia;

no other forces;

small vibrations: slope ux is always small.
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Fig. 10: Part of a string S
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Let S be a segment between points x and x + ∆x , where ∆x > 0

is small (Fig. 10). Wave equation is a conclusion from the second

law of Newton, which says that

(Masa S)· (Acceleration S) = Total force acting on S , (21)

where acceleration and force act perpendicularly to S .
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Mass of the string segment S :

Masa S = ρ

x+∆x∫
x

√
1 + (ux(s, t))2 ds . (22)

for small amplitude |ux | � 1, wi¦c

Mass S = ρ

x+∆x∫
x

1 ds = ρ∆x . (23)
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Acceleration of the string segment S :

utt(x , t) (24)

Force acting on a string segment S: tangent vector to the string at the point x has the
co-ordinates −(1, ux (x , t), so the stretching force T acting on the left end of a
segment:

− T
(1, ux (x , t))√
1 + (ux (s, t))2

, (25)

Making use of the assumption of the small amplitudes once again√
1 + (ux (s, t))2 ≈ 1 ,

vertical component of the force equals

−T ux (x , t) .
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We repeat the considerations for right end of the segment

T ux(x + ∆x , t) .

so, the total force Fc acting on S equals

Fc = T ux(x + ∆x , t)− T ux(x , t) . (26)
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The obtained results we put into Eqn. (21)

(ρ∆x) utt(x , t) = T ux(x + ∆x , t)− T ux(x , t) . (27)

divide by ∆x

ρ utt(x , t) = T
ux(x + ∆x , t)− ux(x , t)

∆x
,

and in the limit ∆x → 0 gives

ρ utt(x , t) = T uxx(x , t) .
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Putting c =
√

T/ρ we obtain the standard form of the wave

equation

utt(x , t) = c2 uxx(x , t) . (28)

The equation is more complicated when the other forces are

included, e.g.

ρ utt = T uxx − F ut − R u + f (x , t) .

−F ut � friction force (const. = F > 0);

−R u � linear back force (const. = R > 0);

+f (x , t) � external force(e.g. gravitation).
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Solutions are the traveling waves

u(x , t) = f (x − c t) , u(x , t) = f (x + c t) ,

where c is the propagation velocity of the wave. Because

c =
√

T/ρ ,

the velocity of the wave can be:

growing, when the string tension T will be growing,

reducing, by taking the material with the greater mass density.
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We show that the solution of the wave equation utt = c2uxx is the sum of the two
solutions: one traveling to right and the second traveling to the left

u(x , t) = F (x − ct) + G(x + ct) .

Initial condition:

partial di�erential equation

utt = c2uxx , −∞ < x <∞ , t > 0 ,

initial conditions
u(x , 0) = f (x) ,

ut(x , 0) = g(x) ,

can be formulated as follows:

u(x , t) =
1

2
(f (x − ct) + f (x + ct)) =

1

2c

x+ct∫
x−ct

g(s) ds .
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We know that the solutions are the two traveling waves: h(x − cy)
and h(x + ct). We make the change of the variables:

ξ(x , t) = x − ct , η(x , t) = x + ct ,

these are the co-ordinates 'following' the waves traveling from the

left and from the right. The construction of the solution is easer.

From the de�nition

u(x , t) = U(ξ(x , t), η(x , t)) .
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We di�erentiate

ut = Uξξt + Uηηt = −cUξ + cUη ,

utt = −c(Uξξξt + Uξηηt) + c(Uηξξt + Uηηηt)
= −c(−cUξξ + cUξη) + c(−cUηξ + cUηη))
= c2Uξξ − 2c2Uξη + c2Uηη ,

ux = Uξξx + Uηηx = Uξ + Uη ,

uxx = (Uξξξx + Uξηηx) + (Uηξξx + Uηηηx)
= (Uξξ + Uξη) + (Uηξ + Uηη)
= Uξξ + 2Uξη + Uηη .

(29)
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and next
Uξη = 0 .

We integrate with respect to η (Uξη does not depend on η)

Uξ = φ(ξ) .

We integrate with respect to ξ

U(ξ, η) =

∫
φ(ξ)dξ + G(η) = F (ξ) + G(η) .

Coming back to the old notation

u(x , t) = F (x − ct) + G(x + ct) . (30)
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Examples of the solutions of the wave equation:

u(x , t) = ex−ct ,

u(x , t) = sin(x + ct) ,

u(x , t) = (x + ct)2 + e−(x−ct)2 .

The �rst two equations represent the waves traveling to the left and to the right. The
third equation is the combination of the waves traveling to the left and to the rigt.

�

Fig. 11: Pro�les of the solution of the wave equation with the initial pro�le

u(x , 0) = e−x
2
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We make the following assumptions: initial position u(x , 0) and

initial velocity ut(x , 0) are given for all x (e.g. = 0). The initial

pro�le u(x , 0) = f (x) and velocity ut(x , 0) = 0.

We solve the following problem:

PDE: utt = c2 uxx , −∞ < x <∞ , t > 0 ,

IC: u(x , 0) = f (x) ,

ut(x , 0) = g(x) .
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We are looking for the solution in the general form:

u(x , t) = F (x − ct) + G (x + ct) .

We put the initial conditions for the posion

F (x) + G (x) = f (x) . (31)

and for the velocity

− c F ′(x) + c G ′(x) = g(x) . (32)
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We divide by c and integrate from 0 to x

− F (x) + G (x) = −F (0) + G (0) +
1

c

x∫
0

g(s)ds . (33)

Equations (31) and (33) are the system of the linear equations for

F (x) and G (x)

F (x) =
1

2
f (x)− 1

2
(−F (0) + g(0)− 1

2c

x∫
0

g(s)ds ,

G (x) =
1

2
f (x)− 1

2
(−F (0) + g(0) +

1

2c

x∫
0

g(s)ds ,
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The solution will have the form:

u(x , t) = F (x − ct) + G (x + ct) =

1

2
f (x − ct)− 1

2
(−F (0) + G (0))− 1

2c

x−ct∫
0

g(s)ds

+
1

2
f (x + ct)− 1

2
(−F (0) + G (0))− 1

2c

x+ct∫
0

g(s)ds

=
1

2
f (x − ct) +

1

2
f (x + t) +

1

2c

x+ct∫
x−ct

g(s)ds .
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Finally we obtain the d'Alembert solution

u(x , t) =
1

2
(f (x − ct) + f (x + ct)) +

1

2c

x+ct∫
x−ct

g(s)ds . (34)

of the wave equation. It is a very seldom case of the solution in the

open form.
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Fig. 12: Re�ection and refraction of the wave in the wave medium (a), and in the
elastic medium (b)
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The end of the lecture 6

Romuald Kotowski Vibrations and Waves


	Physics Lecture 6
	Introduction
	Mathematical representation of waves
	Representation of one dimensional waves
	Traveling and standing waves
	Wave front and pulses
	Wave trains and dispersion

	Korteweg-deVries (KdV) Equation
	Vibrations and wave equation
	Reflection and refraction of waves


